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LIMIT LOAD IN BENDING OF WELDED SAMPLES

WITH A SOFT WELDED JOINT

UDC 539.374S. E. Alexandrov

The limit load is one of the basic characteristics in estimating the workability of various structures,
in particular, welded structures with a soft welded joint. In some cases, the difference in the yield
stresses of the base material and the welded joint material is so pronounced that plastic strains are
localized in a thin welded joint. The upper bound of the limit load of a welded sample subjected to
bending under conditions of plane strains is obtained with allowance for certain specific features of
such a distribution of strains. A comparison with the known solution is performed.
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The limit load is one characteristic that determines the workability of various structures [1]. In many modern
welded structures, the material of the welded joint is softer than the base material [2, 3]. In this case, plastic strains
are localized inside a thin welded joint, and the base material remains elastic. Note that the limit load is independent
of the elastic properties of the material [4]; therefore, the base material may be considered in calculations as a rigid
material. A discontinuity in velocity arises at the interface of the base material and welded joint because of the
small thickness of the welded joint. The asymptotic form of the real velocity field near the discontinuity surface is
known [5] and can be taken into account in constructing the kinematically admissible velocity fields (based on these
fields and using the associated flow rule, one can further construct stress fields satisfying the boundary condition on
the velocity discontinuity surface). A rather general method of constructing such kinematically admissible velocity
fields for stretchable samples was proposed in [6] and applied in [7–9]. In the present paper, this method is extended
to the case of bending of the samples.

The geometric configuration of the sample and the axes of the Cartesian coordinate system are shown in
Fig. 1. The coordinate axes coincide with the axes of symmetry of the sample. The principal strain rate is assumed
to be ξzz = 0. The sample is loaded by two bending moments M .

By virtue of symmetry, it is sufficient to consider only one fourth of the sample with x � 0 and y � 0. The
base material rotates as a rigid solid in the clockwise direction with respect to the origin with an angular velocity ω.
The kinematically admissible velocity field in the welded joint is schematically illustrated in Fig. 2. The velocity
vector in the rigid zones can be presented as

v = vxi + vyj = ωyi − ωxj. (1)

Here i and j are the unit vectors of the Cartesian coordinate system; vx = ωy and vy = −ωx are the components
of the velocity vector in this coordinate system. We indicate the velocity vector in the plastic zone by u and its
components by ux and uy. It follows from Eq. (1) that vx is independent of x, in particular, vx = ωy for x = H .
Therefore, one of the kinematic boundary conditions in the plastic zone has the form

x = H : ux = ωy. (2)
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Fig. 1. Geometric configuration of the sample: 1) welded joint; 2) base material; the sample thickness
and the welded joint width are indicated by 2L and 2H , respectively.

Fig. 2. Scheme of a kinematically admissible velocity field in the welded joint: 1) rigid zone rotating
together with the base material; 2) plastic zone; the velocity discontinuity curves are indicated by
0b and bd.

Another condition follows from the symmetry of the problem:

x = 0: ux = 0. (3)

To satisfy the boundary conditions (2) and (3), we present the velocity component ux as

ux = ωyx/H. (4)

Substituting Eq. (4) into the incompressibility equation ∂ux/∂x + ∂uy/∂y = 0 and integrating it, we obtain

uy = −ωy2/(2H) + ωHf(x), (5)

where f(x) is an arbitrary function of x. The distribution of the real velocity field near the velocity discontinuity
surface bd (Fig. 2) is described by the law [5]

uy = U0 + U1(H − x)1/2 + o[(H − x)1/2], x → H. (6)

Here U0 and U1 are independent of x. Moreover, it follows from the problem symmetry that the component uy is
an even function of x. The simplest even function f(x) that satisfies Eq. (6) has the form

f(x) = c0 + c1[1 − (x/H)2]1/2, c0 = const, c1 = const. (7)

Introducing the dimensionless variables

χ = y/L, sin γ = x/H, h = H/L, (8)

and taking into account Eq. (7), we can present the kinematically admissible velocity field (4), (5) as follows:

ux/(ωL) = χ sin γ, uy/(ωL) = h(c0 + c1 cos γ) − χ2/(2h). (9)

The components of the velocity vector (1) transform to

vx/(ωL) = χ, vy/(ωL) = −h sinγ. (10)

The normal component on the velocity discontinuity line 0b (Fig. 2) should be continuous. Let ϕ be the angle
between the tangent to the velocity discontinuity line at an arbitrary point P and the x axis (the angle is counted
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from the x axis in the counterclockwise direction) (Fig. 2). Then the unit normal to the velocity discontinuity line
at the point P is presented as

n = − sinϕi + cosϕj. (11)

Obviously, we have

tan ϕ =
dy

dx
=

1
h cos γ

dχ

dγ
. (12)

The condition of continuity of the normal velocity on the line 0b can be written as a scalar product of the
vectors v · n = u · n. Substituting Eqs. (9)–(12) into this expression, we obtain

2z(1 − sin γ)
cos γ

dχ

dγ
= χ2 − 2(c0 + c1 cos γ + sinγ)h2. (13)

The solution of Eq. (13) determines the shape of the line 0b. For the velocity field to be kinematically admissible,
this line has to pass through the origin; therefore, the boundary condition for Eq. (13) has the form

γ = 0: χ = 0. (14)

Equation (13) reduces to a linear differential equation for the unknown ζ = χ2; therefore, the general solution of
Eq. (13) can be found by known methods. A particular solution satisfying the boundary condition (14) has the
form

ζ0b(γ) = −h2(sin2 γ + c1(γ + sinγ cos γ) + 2c0 sin γ)/(1 − sin γ). (15)

Here ζ0b(γ) is the value of ζ at the points that belong to the line 0b. In the general case, it follows from this equation
that ζ0b → ∞ as γ → π/2 (or x → H). To obtain a finite value of ζ for γ → π/2, we have to set

2c0 = −(1 + πc1/2). (16)

In this case, Eq. (15) transforms to

ζ0b(γ) = h2[2 sin γ(1 − sin γ) − c1(2γ + sin 2γ − π sin γ)]/[2(1 − sin γ)]. (17)

For γ = π/2, the value of ζ and the corresponding value of χ are determined from Eq. (17) by the limiting transition

ζb = h2(1 − c1π/2), χb = h(1 − c1π/2)1/2. (18)

Using Eq. (9), we can find the nonzero components of the strain rate tensor in the form

ξxx =
ωχ

h
, ξyy = −ωχ

h
, ξxy =

ω sinγ

2

(
1 − c1

cos γ

)
.

Then, the equivalent strain rate is

ξeq =

√
2
3

(ξ2
xx + ξ2

yy + 2ξ2
xy)

1/2 =
ω√

3h cos γ
[4χ2 cos2 γ + h2 sin2 γ(cos γ − c1)2]1/2. (19)

With the use of the Mises yield condition, the power in the plastic zone is determined as

Ωpl =
√

3 kB

∫ ∫
ξeq dx dy. (20)

Here k is the shear yield stress; integration is performed over the domain 0bde (see Fig. 2). Substituting Eq. (19)
into Eq. (20) and integrating over the dimensionless variables χ and γ [see Eq. (8)], we obtain

Ωpl

ωkBL2
=

π/2∫

0

1∫

ζ
1/2
0b (γ)

[4χ2 cos2 γ + h2 sin2 γ(cos γ − c1)2]1/2 dχ dγ. (21)

The velocity jump on the line 0b is determined by the formula

[u]0b = [(ux − vx)2 + (uy − vy)2]1/2. (22)

Here the velocity components have to be calculated for ζ = ζ0b(γ). Substituting Eqs. (9) and (10) into Eq. (22), we
obtain
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[u]0b = ωL{(1 − sin γ)2ζ0b(γ) + [(c0 + c1 cos γ + sin γ)h − ζ0b(γ)/(2h)]2}1/2. (23)

As the derivative dχ/dγ along the line 0b can be found from Eq. (13), the infinitesimal element of length of the
line 0b is determined as

dl0b = [(dx)2 + (dy)2]1/2 = H cos γ
[
1 +

1
h2 cos2 γ

(dχ

dγ

)2]1/2

dγ

=
H cos γ{(1 − sin γ)2ζ0b(γ) + [ζ0b(γ)/(2h) − (c0 + c1 cos γ + sin γ)h]2}1/2

ζ
1/2
0b (γ)(1 − sin γ)

dγ. (24)

On this velocity discontinuity line, the power of internal forces is determined by the relation

Ω0b = Bk

∫

l

[u]0b dl0b. (25)

Substituting Eqs. (23) and (24) into Eq. (25), we obtain

Ω0b

ωkBL2
= h

π/2∫

0

cos γ

ζ
1/2
0b (γ)(1 − sin γ)

[
(1 − sin γ)2ζ0b(γ)

+
(ζ0b(γ)

2h
− (c0 + c1 cos γ + sin γ)h

)2]
dγ. (26)

With allowance for Eq. (17), the integrand is a known function of γ. The quantity c0 is determined in Eq. (16).
Another velocity jump arises at x = H in the domain χb � χ � 1, where χb is determined from Eq. (18). The

magnitude of this jump is [u]bd = |uy − vy|. Taking into account Eqs. (9) and (10) with γ = π/2 and relations (16),
we obtain

[u]bd =
ωH

2

(χ2

h2
+

πc1

2
− 1

)
. (27)

In deriving this expression, we assumed that the following inequality is valid in the domain χb � χ � 1:

χ2/h2 + πc1/2 − 1 � 0. (28)

The validity of this inequality is verified by the numerical solution. An infinitesimal element of length of the line bd

is dlbd = dy (see Fig. 2). With the use of Eqs. (8) and (27), we write the expression for the power on the velocity
discontinuity line bd as

Ωbd = Bk

∫

l

[u]bd dlbd =
ωBHkL

2

1∫

χb

(χ2

h2
+

πc1

2
− 1

)
dχ,

i.e.,

Ωbd

ωkBL2
= −h

2

(
1 − c1π

2

)
(1 − χb) +

1 − χ3
b

6h
. (29)

Here the quantity χb has to be eliminated with the use of Eq. (18).
The upper bound theorem predicts that [10]

Mω � 2(Ωpl + Ω0b + Ωbd), (30)

where it is taken into account that the values of Ωpl, Ω0b, and Ωbd in Eqs. (21), (26), and (29) were calculated for
one quarter of the sample. Inequality (30) can be presented as

mu =
Mu

kBL2
= 2

( Ωpl

ωkBL2
+

Ω0b

ωkBL2
+

Ωbd

ωkBL2

)
. (31)

Here Mu is the upper bound of the bending moment. With the use of Eqs. (21), (26), and (29), the right side of
Eq. (31) can be presented in the form of the function c1. To obtain the upper bound, we have to find the minimum
of this function.
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Fig. 3. Upper bound of the dimensionless limit bending moment versus the relative thickness of the
welded joint: the solid and dashed curves are the results calculated in the present work and in [3],
respectively.

Numerical minimization involves some difficulties typical of this class of problems. First of all, it follows
from Eq. (17) that, for γ = π/2, the function ζ0b(γ) in Eqs. (21) and (26) has an uncertainty of the type 0/0.
Therefore, in numerical calculations in the interval π/2 − δ � γ � π/2, we used two first terms of the expansion of
the function ζ0b(γ) into a series in the neighborhood of the point γ = π/2, which has the form

ζ0b(γ) = h2
(
1 − c1π

2

)
+

4
3

c1h
2
(π

2
− γ

)
+ o

(π

2
− γ

)
, γ → π

2
. (32)

The integrand in Eq. (26) tends to infinity as γ → 0, because ζ0b(γ) → 0 as γ → 0. It can be shown,
however, that the integral in Eq. (26) is converging. In addition, for γ = π/2, the integrand in Eq. (26) includes
uncertainties of the form 0/0. Expanding the integrand in Eq. (26) into a series in the neighborhood of the points
γ = 0 and γ = π/2 and integrating from γ = 0 to γ = δ and from γ = π/2 − δ to γ = π/2, respectively, we obtain

1
ωkBL2

Ω0b

∣∣∣
δ

0
=

2h2[c1 − (1 + c1π/2)/2]2
√

δ√
1 − 2c1(1 − π/4)

,
1

ωkBL2
Ω0b

∣∣∣
π/2

π/2−δ
=

c2
1h

2δ2

9
√

1 − c1π/2
. (33)

The integral in Eq. (26) within the limits from γ = δ to γ = π/2 − δ (Ω0b|π/2−δ
δ ) can be found numerically. As a

result, we obtain

Ω0b = Ω0b

∣∣∣
δ

0
+ Ω0b

∣∣∣
π/2−δ

δ
+ Ω0b

∣∣∣
π/2

π/2−δ
. (34)

With the use of Eqs. (26), (29), and (32)–(34), the right side in Eq. (31) can be minimized numerically. In
calculations, we assumed that δ = 10−4. The dependence mu(h) is plotted in Fig. 3 (solid curve). Note that the
solution proposed is valid only if χd � 1 (see Fig. 2). The value of c1 and, with allowance for Eq. (18), the value
of χd are determined simultaneously with the minimum value of mu. The calculations showed that the inequalities
(28) and χd < 1 are satisfied in the range of h considered.

The upper bound of the bending moment obtained with the use of the kinematically admissible velocity field,
which yields (with the use of the associated flow rule) a stress field satisfying the static equations in the plastic
zone, was proposed in [3]. Applying the notation used in the present work, we can approximate this solution in the
interval 0.03 � h � 0.40 by the expression

mu = 0.89 + 0.5/h (35)

(dashed curve in Fig. 3). Equating the values of mu obtained by relations (31) and (35), we find that both solutions
predict an identical bound of the limit moment for h = h∗ ≈ 0.22. Thus, expression (31) should be used for h � h∗,
and expression (35) should be used for h � h∗.

This work was supported by the Council on the Grants of the President of the Russian Federation for
Supporting the Leading Scientific Schools (Grant No. NSh-4472.2006.1).
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